An Algorithm for Solving Scaled Total Least Squares Problems

نویسندگان

  • Sanzheng Qiao
  • Wei Xu
  • Yimin Wei
چکیده

In this paper, we present a rankrevealing two-sided orthogonal decomposition method for solving the STLS problem. An error analysis of the algorithm is given. Our numerical experiments show that this algorithm computes the STLS solution as accurate as the SVD method with less computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for solving rank-deficient scaled total least square problems

The scaled total least square (STLS) problem, introduced by B.D. Rao in 1997, unifies both the total least square (TLS) and the least square (LS) problems. The STLS problems can be solved by the singular value decomposition (SVD). In this paper, we give a rank-revealing two-sided orthogonal decomposition method for solving the STLS problem. An error analysis is presented. Our numerical experime...

متن کامل

Unifying Least Squares, Total Least Squares and Data Least Squares

The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

A note on the scaled total least squares problem

In this note, we present two results on the scaled total least squares problem. First, we discuss the relation between the scaled total least squares and the least squares problems. We derive an upper bound for the difference between the scaled total least squares solution and the least squares solution and establish a quantitative relation between the scaled total least squares residual and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008